Article 17
Exponential Expressions.

Adding and subtracting (27), (28) give the identities

coshu + sinhu = 1 + u + 1 2!u2 + 1 3!u3 + 1 4!u4 + = eu, coshu sinhu = 1 u + 1 2!u2 1 3!u3 + 1 4!u4 = eu,

hence

coshu = 1 2(eu + eu),sinhu = 1 2(eu eu), tanhu = eu eu eu + eu, sechu = 2 eu + eu, etc.  (30)

The analogous exponential expressions for sinu,cosu are

cosu = 1 2(eui + eui),sinu = 1 2i(eu eui),(i = 1)

where the symbol eui stands for the result of substituting ui for x in the exponential development

ex = 1 + x + 1 2!x2 + 1 3!x3 +

This will be more fully explained in treating of complex numbers, Arts. 28, 29.

Prob. 37.
Show that the properties of the hyperbolic functions could be placed on a purely algebraic basis by starting with equations (30) as their definitions; for example, verify the identities:

sinh(u) = sinh u,cosh(u) = cosh u, cosh 2u sinh 2u = 1,sinh(u + v) = sinh ucosh v + cosh usinh v, d2(cosh mu) du2 = m2 cosh mu,d2(sinh mu) du2 = m2 sinh mu.

Prob. 38.
Prove (cosh u + sinh u)n = cosh nu + sinh nu.
Prob. 39.
Assuming from Art. 14 that cosh u, sinh u satisfy the differential equation d2y du2 = y, whose general solution may be written y = Aen + Ben, where A, B are arbitrary constants; show how to determine A, B in order to derive the expressions for cosh u, sinh u, respectively. [Use eq. (15).]
Prob. 40.
Show how to construct a table of exponential functions from a table of hyperbolic sines and cosines, and vice versa.
Prob. 41.
Prove u = log e(cosh u + sinh u).
Prob. 42.
Show that the area of any hyperbolic sector is infinite when its terminal line is one of the asymptotes.
Prob. 43.
From the relation 2 cosh u = en + en prove
2n1(cosh u)n = cosh nu + ncosh(n 2)u + 1 2n(n 1) cosh(n 4)u + ,

and examine the last term when n is odd or even. Find also the corresponding expression for 2n1(sinh u)n.