Article 15
Derivatives of Anti-hyperbolic Functions.

(a)d(sinh1x) dx = 1 x2 + 1, (b)d(cosh1x) dx = 1 x2 1, (c)d(tanh1x) dx = 1 1 x2 x<1, (d)d(coth1x) dx = 1 1 x2 x>1, (e)d(sech1x) dx = 1 x1 x2, (f )d(csch1x) dx = 1 xx2 + 1, (26)
(a)
Let u = sinh1x, then x = sinhu, dx = coshudu = 1 + sinh 2 u = 1 + x2du, du = dx 1 + x2.
(b)
Similar to (a).
(c)
Let u = tanh1x, then x = tanhu, dx = sech2udu = (1 tanh2u)du = (1 x2)du, du = dx 1 x2.
(d)
Similar to (c).
(e)
d(sech1x) dx = d dx cosh1 1 x = 1 x2 1 x2 11 2 = 1 x1 x2.
(f)
Similar to (e).
Prob. 31.
Prove d(sin 1x) dx = 1 1 x2, d(cos 1x) dx = 1 1 x2, d(tan 1x) dx = 1 1 + x2, d(cot 1x) dx = 1 1 + x2.
Prob. 32.
Prove dsinh 1x a = dx x2 + a2, dcosh 1x a = dx x2 a2, dtanh 1x a = adx a2 x2 x<a, dcoth 1x a = adx x2 a2 x>a.

 

Prob. 33.
Find d(sech 1x) independently of cosh 1x.
Prob. 34.
When tanh 1x is real, prove that coth 1x is imaginary, and conversely; except when x = 1.
Prob. 35.
Evaluate sinh 1x log x , cosh 1x log x when x = .