Article 19
Logarithmic Expression of Anti-Functions.

Let

x = coshu,  then x2 1 = sinhu;  therefore x + x2 1 = coshu + sinhu = eu,  and u = cosh1x = log x + x2 1.  (38)  Similarly, sinh1x = log x + x2 + 1.  (39)  Also sech1x = cosh1 1 x = log 1 + 1 x2 x ,  (40) csch1x = sinh1 1 x = log 1 + 1 + x2 x .  (41)  Again, let x = tanhu = eu eu eu + eu,  therefore 1 + x 1 x = eu eu = e2u, 2u = log 1 + x 1 x,tanh1 = 1 2 log 1+x 1x;  (42)  and coth1x = tanh1 1 x = 1 2 log x+1 x1.  (43)
Prob. 46.
Show from (38), (39), that, when x,
sinh 1x log xlog 2,cosh 1x log xlog 2,

and hence show that the integration-constants in (32), (33) are each equal to log 2.

Prob. 47.
Derive from (42) the series for tanh 1x given in (34).
Prob. 48.
Prove the identities: log x = 2 tanh 1x 1 x + 1 = tanh 1x2 1 x2 + 1 = sinh 11 2(x x1) = cosh 11 2(x + x1); log sec x = 2 tanh 11 2x; log csc x = 2 tanh 1 tan 2 1 4π + 1 2x; log tan x = tanh 1 cos 2x = sinh 1 cot 2x = cosh 1 csc 2x.