Article 11
Functions of Sums and Differences.

(a) To prove the difference-formulas

sinh(u v) = sinhucoshv coshusinhv, cosh(u v) = coshucoshv sinhusinhv. (19)

pict

Let OA be any radius of a hyperbola, and let the sectors AOP,AOQ have the measures u,v; then u v is the measure of the sector QOP. Let OB,OQ be the radii conjugate to OA,OQ; and let the coördinates of P,Q,Q be (x1,y1), (x,y), (x,y) with reference to the axes OA,OB; then

sinh(u v) = sinh  sector QOP K =  triangle QOP K  [Art. 5. = 1 2(xy1 x1y)sinω 1 2a1b1 sinω = y1 b1 x a1 y b1 x1 a1 = sinhucoshv coshusinhv;

cosh(u v) = cosh  sector QOP K =  triangle POQ K  [Art. 5. = 1 2(x1y y1x)sinω 1 2a1b1 sinω = y b1 x1 a1 y b1 x a1;  but y b1 = x a1,x a1 = y b1,  (20) since Q,Q are extremities of conjugate radii; hence
cosh(u v) = coshucoshv sinhusinhv.

In the figures u is positive and v is positive or negative. Other figures may be drawn with u negative, and the language in the text will apply to all. In the case of elliptic sectors, similar figures may be drawn, and the same language will apply, except that the second equation of (20) will be x a1 = y b1 ; therefore

sin(u v) = sinucosv cosusinv, cos(u v) = cosucosv + sinusinv.

(b) To prove the sum-formulas

sinh(u + v) = sinhucoshv + coshusinhv, cosh(u + v) = coshucoshv + sinhusinhv. (21)

These equations follow from (19) by changing v into v, and then for sinh(v), cosh(v), writing sinhv, coshv (Art. 9, eqs. (18)).

(c) To prove that

tanh(u ± v) = tanhu ± tanhv 1 ± tanhutanhv. (22)

Writing tanh(u ± v) = sinh(u ± v) cosh(u ± v), expanding and dividing numerator and denominator by coshucoshv, eq. (22) is obtained.

Prob. 16.
Given cosh u = 2,cosh v = 3, find cosh(u + v).
Prob. 17.
Prove the following identities:
(a)
sinh 2u = 2 sinh ucosh u.
(b)
cosh 2u = cosh 2u + sinh 2u = 1 + 2 sinh 2u = 2 cosh 2u 1.
(c)
1 + cosh u = 2 cosh 21 2u,cosh u 1 = 2 sinh 21 2u.
(d)
tanh 1 2u = sinh u 1 + cosh u = cosh u 1 sinh u = cosh u 1 cosh u + 1 1 2 .
(e)
sinh 2u = 2 tanh u 1 tanh 2u,cosh 2u = 1 + tanh 2u 1 tanh 2u.
(f)
sinh 3u = 3 sinh u + 4 sinh 3u,cosh 3u = 4 cosh 3u 3 cosh u.
(g)
cosh u + sinh u = 1 + tanh 1 2u 1 tanh 1 2u.
(h)
(cosh u + sinh u)(cosh v + sinh v) = cosh(u + v) + sinh(u + v).
(i)
Generalize (h); and show also what it becomes when u = v =
(j)
sinh 2xcos 2y + cosh 2xsin 2y = sinh 2x + sin 2y.
(k)
cosh 1m ±cosh 1n = cosh 1 mn ±(m2 1)(n2 1).
(l)
sinh 1m ±sinh 1n = sinh 1 m1 + n2 ±n1 + m2.
Prob. 18.
What modifications of signs are required in (21), (22), in order to pass to circular functions?
Prob. 19.
Modify the identities of Prob. 17 for the same purpose.