Notes

1It is often convenient to use digits rather than letters for the purpose of illustration.

2We shall sometimes use the phrase that two groups are of the same type to denote that they are simply isomorphic.

3Dyck, “Gruppentheoretische Studien,” Math. Ann., Vol. XX (1882), p. 30.

4“Algebraische Gebilde mit eindeutigen Transformationen in sich,” Math. Ann., Vol. XLI (1893), p. 421.

5Among these T of course occurs.

6Among these sub-groups H itself occurs.

7Strictly speaking, this statement should be qualified by the addition “except that formed by the identical operation alone.” No real ambiguity however will be introduced by always leaving this exception unexpressed.

8“Zur Reduction der algebraischen Gleichungen,” Math. Ann. XXXIV (1889), p. 31.

9Herr Frobenius has extended the use of the symbol to the case in which Γ is any group, whether contained in G or not, with which every operation of G is permutable: “Ueber endliche Gruppen,” Berliner Sitzungsberichte, 1895, p. 169. We shall always use the symbol in the sense defined in the text.

10Dyck, “Gruppentheoretische Studien,” Math. Ann. Vol. XXII (1883), p. 97.

11On Abelian groups, the reader may consult Frobenius and Stickelberger, “Ueber Gruppen vertauschbarer Elemente,” Crelle’s Journal, Vol. LXXXVI (1879), p. 217; and a very complete discussion in the second volume of Herr Weber’s recently published Lehrbuch der Algebra. In the proof of the existence of a set of independent generating operations (§ 41) we have directly followed Herr Weber. The name “Abelian group” has been applied by M. Jordan (Traité des substitutions etc. pp. 171 et seq.) to an entirely different class of groups, whose operations are not permutable. Most writers, we believe, have used the phrase in the sense defined in the text. The connection of Abel’s name with groups of permutable operations is due to his having been the first to investigate, with complete generality, the application of such groups to the theory of equations, “Mémoire sur une classe particulière d’équations résolubles algébriquement,” Crelle’s Journal, Vol. IV (1829), p. 131; or Collected Works, 1881 edition, Vol. I, p. 478.

12Sylow, Math. Ann. V. (1872), p. 588.

13Let P be an operation or sub-group of G, and let H be a sub-group of G which contains P. If every operation of H is permutable with P, we shall speak of P as “self-conjugate in H.” The phrase is to be regarded as emphasizing the relation of P to a sub-group of G which contains it; and not as implying that H is the greatest, or the only, sub-group of G, within which P is a self-conjugate operation or sub-group.

14Young, American Journal, vol. XV (1893), p. 132.

15Frobenius, “Ueber endliche Gruppen,” Berliner Sitzungsberichte (1895), p. 173: Burnside, “Notes on the theory of groups of finite order,” Proc. London Mathematical Society, Vol. XXVI (1895), p. 209.

16Young, “On groups whose order is the power of a prime,” American Journal of Mathematics, Vol. XV (1893), p. 171.

17Let S1α1 = 1,S 2α2 = 1,,S nαn = 1, f1(Si) = 1,f2(Si) = 1,,fk(Si) = 1,

where fj(Si) is an abbreviation for an expression of the form SpaSqbSrc, be a set of relations, such as was considered in § 18, which completely specify a group. We may then, without altering the sense in which the word “type” has been used (§§ 19, 44), speak of the type of group defined by these relations. It is essential however that the relations should completely specify the group, as otherwise they will define more than one type. For instance, it is clear, from § 56, that the equations

Qp = 1,Pp2 = 1,Q1PQ = Pα,
where p is a given prime, but α is not given, will define more than one type of group. Any data in fact, which completely specify a group, may be said to define a type of group. Thus in dealing with Abelian groups of order pm, a type is defined by a partition of m.

18Frobenius, “Verallgemeinerung des Sylow’schen Satzes,” Berliner Sitzungsberichte, (1895), p. 989.

19In each of the five distinct cases to which we have been led in the discussion contained in §§ 65–67, we have arrived at a set of defining relations, containing no indeterminate symbols, such that in each case a set of generating operations can be chosen to satisfy these relations. To justify the statement, in each particular case, that such a set of relations gives a distinct type of group, it is finally necessary to verify that the relations actually define a group of order pm. In the cases dealt with in the text, this verification is implicitly contained in the process by which the relations have been arrived at. We have therefore omitted the direct verification, which moreover is extremely simple. We shall similarly omit the corresponding verifications in the discussion of groups of orders p3 and p4, as in none of these cases does it present any difficulty. To illustrate the necessity of such a verification in general, we may consider a simple case. The relations

P3 = 1,Q9 = 1,P1QP = Qα,
where α is any given integer, certainly define a group whose order is equal to or is a factor of 27, since they indicate that {P} and {Q} are permutable. They will not however give a type of group of order 27, unless α is 14 or 7. For instance, if α = 5, the relations involve
Q = P3QP3 = Q8, orQ7 = 1.
Hence
Q = Q4739 = 1,
and the relations hold only for a group of order 3. Again, if α = 3, the relations give
P1Q3P = Q9 = 1, orQ3 = 1,
and as before they define a group of order 3.

20On groups of orders p3 and p4, the reader may consult, in addition to Young’s memoir already referred to, Hölder, “Die Gruppen der Ordnungen p3, pq2, pqrp4,” Math. Ann., XLIII, (1893), in particular, pp. 371–410.

21Cauchy, Exercises d’analyse, III, (1844), p. 250.

22Sylow, Théorèmes sur les groupes de substitutions, Math. Ann., V (1872) pp. 584 et seq. Compare also Frobenius, Neuer Beweis des Sylow’schen Satzes, Crelle, C. (1886), p. 179.

23Frobenius, “Ueber endliche Gruppen,” Berliner Sitzungsberichte (1895), p. 176: and Burnside, “Notes on the theory of groups of finite order,” Proc. London Mathematical Society, Vol. XXVI (1895), p. 209.

24It should be noticed that, if α is not a root of the congruence, the relations define a group of order p1. Thus from

P11P 2P1 = P2α,
we have
P1p1P 2P1p1 = P 2αp1 .
Hence
P2αp11 = 1, andP2p2 = 1,
so that P2 = 1, and the group reduces to {P1}.

25Miller, Comptes Rendus, CXXII (1896), p. 370.

26Frobenius: Berliner Sitzungsberichte (1895), p. 988.

27“Verallgemeinerung des Sylow’schen Satzes,” Berliner Sitzungsberichte (1895), pp. 984, 985.

28Frobenius, Berliner Sitzungsberichte, (1895), p. 987.

29Frobenius: “Ueber endliche Gruppen,” Berliner Sitzungsberichte (1895), p. 170.

30Frobenius, loc. cit. p. 170.

31“Zurückführung einer beliebigen algebraischen Gleichung auf eine Kette von Gleichungen,” Math. Ann. XXXIV, (1889), p. 33.

32“Traité des substitutions,” (1870), p. 42.

33The reader will notice that B can be eliminated from these relations, and that the group can be defined by A2 = 1, R3 = 1, (AR)3 = 1. The structure of the group however is given, at a glance, by the equations in the text.

34Here again the group can clearly be defined in terms of AQ and R.

35On groups whose order is of the form p2q the reader may consult; Hölder, “Die Gruppen der Ordnungen p3, pq2, pqrp4,” Math. Ann. XLIII (1893), in particular pp. 335–360; and Cole and Glover, “On groups whose orders are products of three prime factors,” Amer. Journal, XV (1893), pp. 202–214.

36When it is necessary to call attention directly to the fact that the group we are dealing with is supposed to be presented as a group of substitutions, the group will be spoken of as a substitution-group.

37The symmetric group has been so called because the only functions of the n symbols which are unaltered by all the substitutions of the group are the symmetric functions. All the substitutions of the alternating group leave the square root of the discriminant unaltered (§ 11).

38Jordan, “Récherches sur les substitutions,” Liouville’s Journal, 2me sér. Vol. XVII (1872), p. 355.

39Jordan, Traité des Substitutions (1870), p. 60.

40“Récherches sur les substitutions,” Liouville’s Journal, 2me sér., Vol. XVII (1872), pp. 357–363.

41Traité des Substitutions (1870), pp. 31, 32.

42For a further discussion of the limits of transitivity of a substitution-group, compare Jordan, Traité des Substitutions, pp. 76–87; and Bochert, Math. Ann., XXIX, (1886) pp. 27–49; XXXIII, (1888) pp. 573–583.

43On the subject of this and the following paragraph, the reader should consult the memoirs by Mathieu, Liouville’s Journal, 2me Sér., t. V (1860), pp. 9–42; ib. t. VI (1861), pp. 241–323; where the groups here considered were first shewn to exist.

44The author has shewn (Messenger of Mathematics, Vol. XXV (1896), pp. 147–153) that the type of group considered in the text is the only type of doubly transitive group of degree pm and order pm(pm 1) when m = 3; and that, when m = 2 and p > 3, the same is true. When m = 2 and p = 3, there is one other type.

45On intransitive groups, reference may be made to Bolza, “On the construction of intransitive groups,” Amer. Journal, Vol. XI, (1889), pp. 195–214. The general isomorphism which underlies the construction of these groups is considered by Klein and Fricke, Vorlesungen über die Theorie der elliptischen Modulfunctionen, Vol. I, (1890), pp. 402–406.

46“Ueber die Congruenz nach einem aus zwei endlichen Gruppen gebildeten Doppelmodul,” Crelle, t. CI, (1887), p. 288.

47Dyck, “Gruppentheoretische Studien, II,” Math. Ann. XXII, (1883), pp. 86–95.

48Jordan, Traité des Substitutions, p. 65; where, however, the exceptional case is overlooked.

49This result, stated in a somewhat different form, is given, among many others, in the letter written by Galois to his friend Chevalier on the evening of May 29th, 1832, the day before the duel in which he was killed. The letter was first printed in the Revue Encyclopédique (1832), p. 568; it was reprinted in the collection of Galois’s mathematical writings in Liouville’s Journal, t. XI (1846), pp. 381–444

50The commas in the symbols for the substitutions are here used to prevent confusion among the one-digit and two-digit numbers.

51Jordan, Comptes Rendus, t. LXXIII (1871), pp. 853–857; ib. t. LXXV (1872), pp. 1754–1757. And see the Bulletin of the New York Mathematical Society, Cole, 1st series, Vol. II, pp. 184–190; 250–258: Miller, 1st series, Vol. III, pp. 168, 169; 242–245: 2nd series, Vol. I, pp. 67–72; 255–258: Vol. II, pp. 138–145. Quarterly Journal of Mathematics, Cole, Vol. XXVI, pp. 372–388: Vol. XXVII, pp. 35–50: Miller, Vol. XXVII, pp. 99–118; Vol. XXVIII, pp. 193–231. These memoirs were all published between 1892 and 1896; in them further references will be found.

52The results contained in §§ 139, 140 are due to Jordan (Liouville’s Journal, Vol. XVI, 1871) and Netto (Crelle’s Journal, Vol. CIII, 1889). They have been extended by Marggraff: “Ueber primitiven Gruppen mit transitiven Untergruppen geringeren Grades,” (Inaugural Dissertation, Giessen, 1892). With the notation used in the text, Marggraff shews that, unless the symbols affected by H can be divided into imprimitive systems of r symbols each, in at least r + 1 distinct ways, G will be (n m + 1)-ply transitive. In particular, if H is a cyclical group of degree m, G is (n m + 1)-ply transitive. He also shews that in any case m 1 2n.

53It is shewn in § 112 that {P} is permutable with a circular substitution of p 1 symbols, which leaves one symbol a1 unchanged. If there are other substitutions which leave a1 unchanged and are permutable with {P}, some such substitution will leave two symbols unchanged. This is clearly impossible. Hence the group of order p(p 1) is the greatest group of the p symbols in which {P} is self-conjugate.

54Comptes Rendus, t. LXXV (1872), p. 1757.

55Netto: “Substitutionentheorie,” pp. 220–235; “Zur Theorie der Tripelsysteme,” Math. Ann. Vol. XLII, (1892), pp. 143–152. Moore: “Concerning triple systems,” Math. Ann. Vol. XLIII, (1893), pp. 271–285. Heffter: “Ueber Tripelaysteme,” Math. Ann., Vol. XLIX, (1897), pp. 101–112.

56Klein, “Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade” (1884), p. 232. Hölder, Math. Ann., Vol. XLIII (1893), p. 314.

57Hölder, “Bildung zusammengesetzter Gruppen,” Math. Ann., Vol. XLVI (1895), p. 326.

58Frobenius, “Ueber endliche Gruppen,” Berliner Sitzungsberichte, 1895, p. 183.

59Frobenius, “Ueber auflösbare Gruppen, II,” Berliner Sitzungsberichte, 1895, p. 1027.

60Frobenius, l.c., pp. 1028, 1029.

61Hölder, “Bildung zusammengesetzter Gruppen,” Math. Ann., Vol. XLVI (1895), p. 325.

62Ibid. p. 325.

63Hölder (loc. cit. p. 331) gives a theorem which is similar but not quite equivalent to Theorem VI.

64Hölder, Math. Ann. Vol. XLVI, (1895), p. 345.

65This and all subsequent congruences in the present section are to be taken, (modp).

66Hölder, loc. cit. p. 343.

67“Ueber auflösbare Gruppen, II,” Berliner Sitzungsberichte, 1895, p. 1028.

68Frobenius, loc. cit. p. 1030.

69Frobenius, loc. cit. p. 1030.

70The investigations of this Chapter are due to Dyck, “Gruppentheoretische Studien,” Math. Ann., Vol. XX, (1882), pp. 1–44. We have followed Dyck’s memoir closely except in two respects. Firstly, we have used a rather more definite geometrical operation than that of the memoir; and secondly, we have not specially considered a regular and symmetric division of a closed surface, apart from a merely regular division.

71The reader who refers to Prof. Dyck’s memoir should notice that the definition of the operation Sr above given is not exactly equivalent to that used by Prof. Dyck. With his notation, the white polygon here considered would correspond to the operation SpSqSrSs.

72In fig. 4 the orthogonal circle, which is not shewn, is taken to be a straight line.

73Forsyth, Theory of Functions, p. 325.

74Hurwitz, “Algebraische Gebilde mit eindeutigen Transformationen in sich,” Math. Ann. XLI, (1893), p. 426.

75Hurwitz, loc. cit. p. 424.

76Forsyth, Theory of Functions, p. 330.

77Klein, “Vorlesungen über das Ikosaeder,” Chap. I.

78Dyck, “Gruppentheoretische Studien,” Math. Ann. XX, (1882), p. 35, and Klein, loc. cit. p. 26.

79Dyck, “Ueber Aufstellung und Untersuchung von Gruppe und Irrationalität regulärer Riemann’scher Flächen,” Math. Ann. XVII, (1880), pp. 501–509.

80This agrees with the result as stated by Dyck, “Gruppentheoretische Studien,” Math. Ann. Vol. XX, (1882), p. 41.

81American Journal of Mathematics, Vol. I, (1878), pp. 174–176, Vol. XI, (1889), pp. 139–157; Proceedings of the London Mathematical Society, Vol. IX, (1878), pp. 126–133.

82For further illustrations, the reader may refer to Young, Amer. Journal, Vol. XV, (1893), pp. 164–167; Maschke, Amer. Journal, Vol. XVIII, (1896), pp. 156–188.

83The homogeneous linear group and its sub-groups forms the subject of the greater part of Jordan’s Traité des Substitutions. The investigation of its composition-series, given in the text, is due to Jordan. The complete analysis of the fractional linear group, defined by

y αx + β γx + δ ,(modp),
where
αδ βγ 1,
is due originally to Gierster, “Die Untergruppen der Galois’schen Gruppe der Modulargleichungen für den Fall eines primzahligen Transformationsgrades,” Math. Ann. Vol. XVIII, (1881), pp. 319–365. With a few unimportant modifications, the investigation in the text follows the lines of Gierster’s memoir. A similar analysis of the simple groups of order 2n(22n 1), which can be expressed as triply transitive groups of degree 2n + 1, has been given by the author, “On a class of groups defined by congruences,” Proc. L. M. S. Vol. XXV, (1894), pp. 132–136.

84The operation (zx1,x2,,xn) has z for its determinant.

85These and all succeeding congruences are to be taken (modp), unless the contrary is stated.

86For the case n = 3 the reader may consult a paper by the author “On a class of groups defined by congruences,” Proc. L. M. S. Vol. XXVI, (1895), pp. 58–106.

87A non-cyclical group of order 4 is called a quadratic group.

88This is another of the results stated in the letter of Galois referred to in the footnote on p. 1106.

89Moore: “On a doubly-infinite series of simple groups,” Chicago Congress Mathematical Papers, (1893); Burnside: “On a class of groups defined by congruences,” Proc. L. M. S. Vol. XXV, (1894), pp. 113–139.

90Hölder, Math. Ann. Vol. XL, (1892), p. 57.

91Frobenius, Berliner Sitzungsberichte 1895, p. 190, and Burnside, Proc. L. M. S. Vol. XXVI, (1895), p. 209; for the case where α m.

92If this sub-group is cyclical, then Q = Qp.

93Proc. L. M. S. Vol. XXVI, (1895), p. 199.

94“Die Gruppen mit quadratfreier Ordnungszahl” Göttingen Nachrichten, 1895: pp. 211–229. Compare also Frobenius, Berliner Sitzungsberichte, 1895, pp. 1043, 1044.

95“Über auflösbare Gruppen, II”: Berliner Sitzungsberichte, 1895, p. 1035.

96Frobenius, loc. cit., p. 1041.

97Frobenius, “Über auflösbare Gruppen, II” Berliner Sitzungsberichte, 1895, p. 1039.

98Burnside, Proc. L. M. S. Vol. XXVI, (1895), p. 332.

99The reader will easily verify that, when this condition is satisfied, H h is Abelian, h being the sub-group formed by the self-conjugate operations of H.

100Math. Ann. Vol. XL, (1892), pp. 55–88.

101American Journal of Mathematics, Vol. XV, (1893), pp. 303–315.

102Proc. London Math. Soc., Vol. XXVI, (1895), pp. 333–338.

103It is not, of course, here suggested that 2835 is the order of a simple group. It may, in fact, be shewn with little difficulty that no number of the form 34pq33p2q, or 32p3q, where p and q are odd primes, can be the order of a simple group. A much higher limit than 2835 may therefore be given for the order, if odd, of a simple group.

104“Bildung zusammengesetzter Gruppen,” Math. Ann. Vol. XLVI., (1895), pp. 321–422; in particular, p. 420.

105This term is used by other German writers to denote the holomorph of a group of prime order.

106It is to be noticed that, if G is multiply isomorphic with H, then H is “meriédriquement isomorphe” with G.

Go Back